
Kubernetes at UChicago:
PATh, IRIS-HEP Scalable Systems Lab,

U.S. ATLAS, and SLATE

Lincoln Bryant, on behalf of the MANIAC Lab team
University of Chicago
3/16/2022

1

Motivation

● Kubernetes is a powerful framework for bridging traditional
infrastructure and forward-looking tools and platforms

● Have been using Kubernetes (K8S) in various forms at UChicago for
over 4 years.

● Foundational for many of our projects!

2

● IRIS-HEP Scalable Systems Laboratory
○ R&D facility for advancing HEP software and frameworks

● U.S. ATLAS Shared Analysis Facility
○ Last-mile interactive analysis with novel platforms.

● SLATE (Services Layer At The Edge)
○ Federated Application Deployment & Operations

● MWT2 and service networks for the U.S. ATLAS
Computing Facility

● PATh
○ Hosted Compute Entrypoints and other

services

● FAB
○ FABRIC Across Borders

● SOTERIA
○ Container registry for open science

IRIS-HEP Scalable Systems Lab

3

● ServiceX & Coffea-Casa
● Frontier Analytics Platform
● PerfSonar Analytics
● Logstash
● Atlas machine learning platform
● CODAS-HEP training platform
● CMS XCache monitoring
● OSG PATh Hosted CEs
● FuncX

SSL@UC, two K8s clusters: River, River-dev

Analysis Facilities

● We are seeing more and more users reaching for tools that are
not a traditional batch interface
○ For example: In the HEP space, a number of interesting new analysis frameworks

are being developed, many of which have adopted Kubernetes as an enabling
technology

● We have used Kubernetes to build an infrastructure that is
flexible enough to support both our batch users and those who
want to use novel tools.

4

https://iris-hep.org/as.html

One example is ServiceX
● A service that quickly filters and delivers

data in columnar formats.
● Filtering here means skimming,

slimming and augmenting input data.
Input data can be xAODs (ATLAS native
formats) or flat ROOT files.

● Resulting data can be delivered as
PyArrow awkward arrays or flat ROOT
files.

● Can be used with Coffea
● Designed using cloud native software

where possible

5

ATLAS Analysis Facility at UChicago

6

● Charged to build a facility for ATLAS user analysis at the
scale of ~1K logical cores and ~1PB storage

● 16 "hyperconverged" nodes, 6 "login" nodes, a GPU node,
16 compute nodes with fast local disk, and 25Gbps
switching infrastructure

● Hyperconverged nodes for jobs and data.
○ Dual AMD Epyc 7402, 512 GB RAM

○ 16TB HDDs and 1TB NVMes for Ceph storage pool

○ 2TB SSDs for dedicated scratch space for batch

● Login nodes for traditional batch logins plus Jupyter
notebooks.
○ Dual AMD Epyc 7402, 256 GB RAM

af.uchicago.edu

https://af.uchicago.edu

7

Supporting LHC Run3 and HL-LHC R&D

Equipped for Run3 analysis (logins, batch, caches, notebooks) but
forward looking with IRIS-HEP services (CoffeaCasa & ServiceX)

Zooming in on the Kubernetes pieces

8

Tools for declarative deployment - FluxCD

● Flux CD - "GitOps" style application
deployment
○ All configuration lives in GitHub,

installation/updates/removal all happen
via the Flux operator that uses Git as a
single source of truth for the cluster.

○ All of the basic Kubernetes extensions are

loaded into the Flux repo (Ingress, Load
Balancer, monitoring, certificate
management, etc)

○ Ceph, HTCondor, etc are also managed by
Flux 9

HTCondor Setup

● Single, unified queue presented to users
○ Any login node, any notebook sees the same queue

● Fully tokenized authentication
○ Each user has a $HOME/.condor directory that holds a

token allowing job submission to the remote schedd on a
shared filesystem

● All execute nodes live in Kubernetes
○ Piecemeal approach to moving daemons into K8S

10

HTCondor Execute

● Pods configured for 80 logical cores per Worker, partitionable slots
● $HOME, $DATA, CVMFS filesystems mounted into containers
● HTCondor pods are dynamically configured based on values from the

Kubernetes downward API, e.g.

resources:
 limits:
 cpu: "84"
 memory: "400G"
 ephemeral-storage: "10G"
 requests:
 cpu: "80"
 memory: "384G"
 ephemeral-storage: "10G"

$ condor_status slot1@c001 -af Memory
366211

- name: _CONDOR_MEMORY
 valueFrom:
 resourceFieldRef:
 containerName: execute
 resource: requests.memory
 divisor: 1Mi

11

Rook & Ceph configuration on the UC AF

● 1PB shared filesystem ($DATA) for users of the AF
● 228x 16TB HDDs configured for 3x replication

○ Erasure coding is tantalizing for the capacity gains, but we haven't had a good experience with
it elsewhere.

● Each node has a dedicated NVMe for Bluestore database (Metadata)
● Each node has a second dedicated NVMe for CephFS
● 3 Active, 3 Standby Metadata Daemons for CephFS
● Filesystem mountable within Kubernetes and outside.
● Currently we are not using RADOSGW or RBD.

○ Focus on performant cluster filesystem for user data.

12

Ceph Dashboard

13

● Creating tools and a trust framework to
create distributed platforms such as CDNs to
reduce operational costs and innovate more
quickly

● SLATE (Services Layer At The Edge)
implements distributed service operation
and a trust model (close as we can get to a
NetFlix model given institutional boundaries)

● Helm packaged applications
○ OSG Entrypoints (both), HTCondor-worker, Frontier Squid,

Globus, FTS, XCache, PerfSonar-test, Open OnDemand
and more

○ https://github.com/slateci/slate-catalog
■ usable via Helm even if you don't use SLATE 14

● SLATE-flavored GitOps
○ Deploy, manage SLATE applications via a

single Git repository

Implementing a federated operation model

slateci.io

https://github.com/slateci/slate-catalog
https://slateci.io

15

Security Policies - with TrustedCI & WLCG

A comprehensive set of
security policies that
describe needed trust
relationships between
application teams, k8s
cluster admins and
resource owners

https://slateci.io/docs/security-and-policies/index.html

The US ATLAS Computing Facility has adopted SLATE

● Each Tier 2 in the US setup K8S and installed SLATE for federated service
management (5 production clusters)

● Each Tier2 is responsible for keeping the hardware running and the OS and K8S
node up to date

● FedOps facility team is responsible for keeping the applications up to date
(Squid,XCache) on the K8S nodes

● Configured to use SLATE GitOps - single GitHub repository storing all configuration
for each application for each site.

● SLATE team responsible for ensuring Helm charts and Docker containers are kept
reasonably up to date, don't have glaring vulnerabilities, etc.

● Same management interface for Squid and XCache, different teams, partitioned
into namespaces by SLATE on the K8S nodes

16

Evolving our T2 model

Manage Hardware, OS,
Kubernetes + SLATE Site admins

Configure and Operate
Services

(e.g. Squid, XCache)

FedOps Teams
per service

Keep software up to date

SLATE team and
trusted container
repositories (SOTERIA
to curate from trusted
sources - CERN, OSG,
etc.)

Manage Hardware
Install / update OS
Configure and Operate
Services
Keep software up to date

Site
admins

Traditional Site

Traditionally, much effort is reproduced
at each site and expertise is scattered

Site under the
 FedOps Model

Add K8S layer to
abstract some of the
common pieces at
each site

Introduce a new layer of abstraction to
consolidate expertise, update quickly, iterate
on new ideas

17

XCache Deployments

● XRootD-based caching
infrastructure

● Optimized access for datasets
that aren't geographically
nearby

● Deployed via SLATE GitOps to
the Analysis Facility

● Hardware
○ 24x3.2TB NVMes
○ 2x25Gbps NIC
○ 2x Xeon Silver 4214, 192GB RAM

18

US ATLAS T2s (UC, IU, UIUC, UM, MSU, UTA,
BU), Munich, Prague, Birmingham

Squid Deployments

● Software caching, namely Frontier data and CVMFS
● Deployed via SLATE GitOps, managed alongside US

Tier 2 squids

19

PATh Services

● For PATh, we are taking advantage of the IRIS-HEP SSL River cluster to
provide some redundancy and soft load-balancing for applications
○ Hosting many of the Hosted Compute Entrypoints (HostedCEs) for PATh

■ ASU, FSU, TACC, UIUC, USF, Purdue, AMNH, UCI, UCONN, and
others!

○ Standby of the OSG Harbor container registry service
■ Postgres Operator for database replication
■ Multisite Ceph for object store replication
■ Manual fail over for maintenance or site failure

20

Deploying into FABRIC

21

Working with FAB (FABRIC Across Borders) to demonstrate ServiceX deployment at CERN, delivery of analysis objects to
analysis facilities in the U.S.

FAB

ServiceX

Coffea
Dask

Laptop, ML platform, cloud

Panda DataFrames,
Awkward Arrays

Histograms

https://af.uchicago.edu

https://af.uchicago.edu

Adding the FABRIC k8s to SLATE

22

Then register the FABRIC-NCSA K8s cluster in
the SLATE federation. Applications will use
SLATE (policy & fedOps) and OSG trusted
image repository (SOTERIA)

CERN->FABRIC->Analysis Facility->Notebook

23
All code can be found here.

ServiceX on

FABRIC-NCSA

QueryOutput

CERN data

source

Notebooks on the SSL or AF

IRIS-HEP Analysis Grand Challenge Tools Workshop Example

https://github.com/ivukotic/servicex-example.git

Summary

24

● We have effectively employed K8s as a technology both within our
site and in distributed fashion for facilities and collaborations

○ A Kubernetes-based testing platform (Scalable Systems Lab) for IRIS-HEP and others

○ With PATh, declarative operations for Compute Entrypoints

○ A declarative, Kubernetes-based analysis facility for ATLAS that allows traditional batch

and forward-looking technologies being developed in IRIS-HEP and other project

○ With SLATE, a trusted federated operations model (FedOps) model for deploying,

operating, and maintaining services for collaborating computing centers

25

thank you

